Skip to content

API Adapters Reference

API adapters provide protocol-specific interfaces for interacting with Xaibo agents. They translate external API requests into Xaibo agent calls and format responses according to the target protocol specifications.

Authentication Setup Guide

For step-by-step authentication setup instructions, see the authentication how-to guide.

Available Adapters

OpenAiApiAdapter

Provides OpenAI Chat Completions API compatibility for Xaibo agents.

Source: src/xaibo/server/adapters/openai.py

Class Path: xaibo.server.adapters.OpenAiApiAdapter

Constructor

OpenAiApiAdapter(xaibo: Xaibo, streaming_timeout=10, api_key: Optional[str] = None)

Parameters

Parameter Type Description
xaibo Xaibo Xaibo instance containing registered agents
streaming_timeout int Timeout in seconds for streaming responses (default: 10)
api_key Optional[str] API key for authentication. If provided, all requests must include valid Authorization header. Falls back to OPENAI_API_KEY environment variable if not specified.

API Endpoints

GET /openai/models

Returns list of available agents as OpenAI-compatible models.

Authentication: Required if API key is configured.

Request Headers:

Authorization: Bearer sk-your-api-key  # Required if authentication enabled

Response Format:

{
  "object": "list",
  "data": [
    {
      "id": "my-agent",
      "object": "model",
      "created": 0,
      "owned_by": "organization-owner"
    }
  ]
}

POST /openai/chat/completions

OpenAI-compatible chat completions endpoint.

Authentication: Required if API key is configured.

Request Headers:

Content-Type: application/json
Authorization: Bearer sk-your-api-key  # Required if authentication enabled

Request Format:

{
  "model": "agent-id",
  "messages": [
    {
      "role": "system",
      "content": "You are a helpful assistant."
    },
    {
      "role": "user",
      "content": "Hello, how are you?"
    }
  ],
  "temperature": 0.7,
  "max_tokens": 2048,
  "stream": false
}

Request Parameters:

Parameter Type Required Description
model str Yes Xaibo agent ID to use
messages List[dict] Yes Conversation messages
stream bool No Enable streaming responses
temperature float No Not yet implemented - Sampling temperature (0.0-2.0)
max_tokens int No Not yet implemented - Maximum tokens to generate
top_p float No Not yet implemented - Nucleus sampling parameter
stop List[str] No Not yet implemented - Stop sequences
presence_penalty float No Not yet implemented - Presence penalty (-2.0 to 2.0)
frequency_penalty float No Not yet implemented - Frequency penalty (-2.0 to 2.0)
user str No Not yet implemented - User identifier

Response Format (Non-Streaming):

{
  "id": "chatcmpl-123",
  "object": "chat.completion",
  "created": 1677652288,
  "model": "agent-id",
  "choices": [
    {
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "Hello! I'm doing well, thank you for asking."
      },
      "finish_reason": "stop"
    }
  ],
  "usage": {
    "prompt_tokens": 0,
    "completion_tokens": 0,
    "total_tokens": 0
  }
}

Response Format (Streaming):

data: {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1677652288,"model":"agent-id","choices":[{"index":0,"delta":{"content":"Hello"},"finish_reason":null}]}

data: {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1677652288,"model":"agent-id","choices":[{"index":0,"delta":{"content":"!"},"finish_reason":null}]}

data: {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1677652288,"model":"agent-id","choices":[{"index":0,"delta":{},"finish_reason":"stop"}]}

data: [DONE]

Message Format Support

Text Messages

Currently only text messages are supported:

{
  "role": "user",
  "content": "What is the weather like?"
}

Image Messages (Planned)

Image message support is planned for future releases:

{
  "role": "user",
  "content": [
    {
      "type": "text",
      "text": "What's in this image?"
    },
    {
      "type": "image_url",
      "image_url": {
        "url": "..."
      }
    }
  ]
}

Function Calls (Planned)

Function call support is planned for future releases:

{
  "role": "assistant",
  "content": null,
  "function_call": {
    "name": "get_weather",
    "arguments": "{\"city\": \"San Francisco\"}"
  }
}

Error Handling

Authentication Errors

When API key authentication is enabled:

Missing Authorization Header:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer

{
  "detail": "Missing Authorization header"
}

Invalid API Key:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer

{
  "detail": "Invalid API key"
}

Agent Not Found

{
  "detail": "model not found"
}

Note: Token counting is not yet implemented, so the usage field in responses currently returns zeros. Full OpenAI-compatible error response format and specific error codes are planned for future releases.

Example Usage

cURL

Without Authentication:

curl -X POST http://localhost:8000/openai/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "my-agent",
    "messages": [
      {"role": "user", "content": "Hello!"}
    ],
    "temperature": 0.7
  }'

With Authentication:

curl -X POST http://localhost:8000/openai/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-your-api-key" \
  -d '{
    "model": "my-agent",
    "messages": [
      {"role": "user", "content": "Hello!"}
    ],
    "temperature": 0.7
  }'

Python (OpenAI SDK)

Without Authentication:

import openai

client = openai.OpenAI(
    base_url="http://localhost:8000/openai",
    api_key="not-needed"  # No authentication required
)

response = client.chat.completions.create(
    model="my-agent",
    messages=[
        {"role": "user", "content": "Hello!"}
    ],
    temperature=0.7
)

print(response.choices[0].message.content)

With Authentication:

import openai

client = openai.OpenAI(
    base_url="http://localhost:8000/openai",
    api_key="sk-your-api-key"  # Use your configured API key
)

response = client.chat.completions.create(
    model="my-agent",
    messages=[
        {"role": "user", "content": "Hello!"}
    ],
    temperature=0.7
)

print(response.choices[0].message.content)

Streaming

stream = client.chat.completions.create(
    model="my-agent",
    messages=[{"role": "user", "content": "Tell me a story"}],
    stream=True
)

for chunk in stream:
    if chunk.choices[0].delta.content is not None:
        print(chunk.choices[0].delta.content, end="")

McpApiAdapter

Implements Model Context Protocol (MCP) server functionality.

Source: src/xaibo/server/adapters/mcp.py

Class Path: xaibo.server.adapters.McpApiAdapter

Constructor

McpApiAdapter(xaibo: Xaibo, api_key: Optional[str] = None)

Parameters

Parameter Type Description
xaibo Xaibo Xaibo instance containing registered agents
api_key Optional[str] API key for authentication. If provided, all requests must include valid Authorization header. Falls back to MCP_API_KEY environment variable if not specified.

API Endpoints

POST /mcp/

Main MCP JSON-RPC 2.0 endpoint for all protocol communication.

Authentication: Required if API key is configured.

Request Headers:

Content-Type: application/json
Authorization: Bearer your-api-key  # Required if authentication enabled

Request Format:

{
  "jsonrpc": "2.0",
  "id": 1,
  "method": "method_name",
  "params": {
    "param1": "value1",
    "param2": "value2"
  }
}

Response Format:

{
  "jsonrpc": "2.0",
  "id": 1,
  "result": {
    "data": "response_data"
  }
}

Error Response Format:

{
  "jsonrpc": "2.0",
  "id": 1,
  "error": {
    "code": -32600,
    "message": "Invalid Request",
    "data": "Additional error information"
  }
}

Authentication Error Response:

{
  "jsonrpc": "2.0",
  "id": null,
  "error": {
    "code": -32001,
    "message": "Missing Authorization header"
  }
}

Supported MCP Methods

initialize

Establishes connection and exchanges capabilities.

Request:

{
  "jsonrpc": "2.0",
  "id": 1,
  "method": "initialize",
  "params": {
    "protocolVersion": "2024-11-05",
    "clientInfo": {
      "name": "my-client",
      "version": "1.0.0"
    },
    "capabilities": {}
  }
}

Response:

{
  "jsonrpc": "2.0",
  "id": 1,
  "result": {
    "protocolVersion": "2024-11-05",
    "serverInfo": {
      "name": "xaibo-mcp-server",
      "version": "1.0.0"
    },
    "capabilities": {
      "tools": {}
    }
  }
}

notifications/initialized

Confirms initialization completion.

Request:

{
  "jsonrpc": "2.0",
  "method": "notifications/initialized"
}

Response: No response (notification)

tools/list

Returns available Xaibo agents as MCP tools.

Request:

{
  "jsonrpc": "2.0",
  "id": 2,
  "method": "tools/list",
  "params": {}
}

Response:

{
  "jsonrpc": "2.0",
  "id": 2,
  "result": {
    "tools": [
      {
        "name": "my-agent",
        "description": "Execute Xaibo agent 'my-agent'",
        "inputSchema": {
          "type": "object",
          "properties": {
            "message": {
              "type": "string",
              "description": "The text message to send to the agent"
            }
          },
          "required": ["message"]
        }
      }
    ]
  }
}

tools/call

Executes a specific agent with provided arguments.

Request:

{
  "jsonrpc": "2.0",
  "id": 3,
  "method": "tools/call",
  "params": {
    "name": "my-agent",
    "arguments": {
      "message": "Hello, what can you help me with?"
    }
  }
}

Response:

{
  "jsonrpc": "2.0",
  "id": 3,
  "result": {
    "content": [
      {
        "type": "text",
        "text": "Hello! I'm a helpful assistant. I can help you with various tasks..."
      }
    ]
  }
}

Agent Entry Points

For agents with multiple entry points, tools are named as agent_id.entry_point:

{
  "tools": [
    {
      "name": "multi-agent.text",
      "description": "Execute text handler for 'multi-agent'"
    },
    {
      "name": "multi-agent.image", 
      "description": "Execute image handler for 'multi-agent'"
    }
  ]
}

Error Codes

Code Description Meaning
-32700 Parse error Invalid JSON
-32600 Invalid Request Missing required fields
-32601 Method not found Unsupported MCP method
-32602 Invalid params Missing agent or arguments
-32603 Internal error Agent execution failure
-32001 Authentication error Missing, invalid, or malformed Authorization header

Example Usage

cURL

Without Authentication:

# Initialize connection
curl -X POST http://localhost:8000/mcp/ \
  -H "Content-Type: application/json" \
  -d '{
    "jsonrpc": "2.0",
    "id": 1,
    "method": "initialize",
    "params": {
      "protocolVersion": "2024-11-05",
      "clientInfo": {"name": "test-client", "version": "1.0.0"}
    }
  }'

# List available tools
curl -X POST http://localhost:8000/mcp/ \
  -H "Content-Type: application/json" \
  -d '{
    "jsonrpc": "2.0",
    "id": 2,
    "method": "tools/list",
    "params": {}
  }'

# Call an agent
curl -X POST http://localhost:8000/mcp/ \
  -H "Content-Type: application/json" \
  -d '{
    "jsonrpc": "2.0",
    "id": 3,
    "method": "tools/call",
    "params": {
      "name": "my-agent",
      "arguments": {"message": "Hello!"}
    }
  }'

With Authentication:

# Initialize connection
curl -X POST http://localhost:8000/mcp/ \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer your-api-key" \
  -d '{
    "jsonrpc": "2.0",
    "id": 1,
    "method": "initialize",
    "params": {
      "protocolVersion": "2024-11-05",
      "clientInfo": {"name": "test-client", "version": "1.0.0"}
    }
  }'

# List available tools
curl -X POST http://localhost:8000/mcp/ \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer your-api-key" \
  -d '{
    "jsonrpc": "2.0",
    "id": 2,
    "method": "tools/list",
    "params": {}
  }'

# Call an agent
curl -X POST http://localhost:8000/mcp/ \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer your-api-key" \
  -d '{
    "jsonrpc": "2.0",
    "id": 3,
    "method": "tools/call",
    "params": {
      "name": "my-agent",
      "arguments": {"message": "Hello!"}
    }
  }'

Python (MCP Client)

Without Authentication:

import json
import requests

class MCPClient:
    def __init__(self, base_url: str, api_key: str = None):
        self.base_url = base_url
        self.session = requests.Session()
        self.request_id = 0

        # Set up authentication if API key provided
        if api_key:
            self.session.headers.update({
                "Authorization": f"Bearer {api_key}"
            })

    def _call(self, method: str, params: dict = None):
        self.request_id += 1
        payload = {
            "jsonrpc": "2.0",
            "id": self.request_id,
            "method": method,
            "params": params or {}
        }

        response = self.session.post(
            f"{self.base_url}/mcp/",
            json=payload,
            headers={"Content-Type": "application/json"}
        )

        return response.json()

    def initialize(self):
        return self._call("initialize", {
            "protocolVersion": "2024-11-05",
            "clientInfo": {"name": "python-client", "version": "1.0.0"}
        })

    def list_tools(self):
        return self._call("tools/list")

    def call_tool(self, name: str, arguments: dict):
        return self._call("tools/call", {
            "name": name,
            "arguments": arguments
        })

# Usage without authentication
client = MCPClient("http://localhost:8000")

# Initialize
init_response = client.initialize()
print("Initialized:", init_response)

# List tools
tools_response = client.list_tools()
print("Available tools:", tools_response["result"]["tools"])

# Call agent
result = client.call_tool("my-agent", {"message": "Hello!"})
print("Agent response:", result["result"]["content"])

With Authentication:

# Usage with authentication
client = MCPClient("http://localhost:8000", api_key="your-api-key")

# Initialize
init_response = client.initialize()
print("Initialized:", init_response)

# List tools
tools_response = client.list_tools()
print("Available tools:", tools_response["result"]["tools"])

# Call agent
result = client.call_tool("my-agent", {"message": "Hello!"})
print("Agent response:", result["result"]["content"])

UiApiAdapter

Provides debug UI and GraphQL API for agent inspection and monitoring.

Source: src/xaibo/server/adapters/ui.py

Class Path: xaibo.server.adapters.UiApiAdapter

Constructor

UiApiAdapter(xaibo: Xaibo)

Parameters

Parameter Type Description
xaibo Xaibo Xaibo instance for agent management

API Endpoints

GET /

Serves static UI files.

Response: Static files for the web interface

POST /api/ui/graphql

GraphQL endpoint for querying agent data and execution traces.

Request Format:

{
  "query": "query GetAgents { agents { id description modules { id module } } }"
}

Response Format:

{
  "data": {
    "agents": [
      {
        "id": "my-agent",
        "description": "Example agent",
        "modules": [
          {"id": "llm", "module": "xaibo.primitives.modules.llm.OpenAILLM"}
        ]
      }
    ]
  }
}

GraphQL Schema

Agent Type

type Agent {
  id: String!
}

Note: Currently only the id field is implemented. The description, modules, and exchange fields are planned for future releases.

Module Type

type Module {
  id: String!
  module: String!
  config: JSON
  provides: [String!]
  uses: [String!]
}

Exchange Type

type Exchange {
  module: String!
  protocol: String!
  provider: String!
  fieldName: String
}

DebugTrace Type

type DebugTrace {
  agent_id: String!
  events: [Event!]!
}

Note: The debug_log query returns DebugTrace instead of Trace. The Trace type is not implemented.

Example Queries

List All Agents

query GetAgents {
  list_agents {
    id
  }
}

Get Agent Configuration

query GetAgentConfig($agentId: String!) {
  agent_config(agent_id: $agentId) {
    id
    modules {
      id
      module
      provides
      uses
      config
    }
    exchange {
      module
      protocol
      provider
    }
  }
}

Get Debug Traces

query GetDebugLog($agentId: String!) {
  debug_log(agent_id: $agentId) {
    agent_id
    events {
      agent_id
      event_name
      event_type
      module_id
      module_class
      method_name
      time
      call_id
      caller_id
      arguments
      result
      exception
    }
  }
}

Debug UI Features

Agent Overview

  • List of all registered agents
  • Agent configuration visualization
  • Module dependency graphs

Execution Traces

  • Real-time trace viewing
  • Filtering by agent and event type
  • Detailed event inspection

Performance Metrics

  • Response time statistics
  • Token usage tracking
  • Error rate monitoring

Adapter Development

Creating Custom Adapters

from fastapi import FastAPI
from xaibo import Xaibo

class CustomApiAdapter:
    def __init__(self, xaibo: Xaibo):
        self.xaibo = xaibo

    def adapt(self, app: FastAPI):
        """Add routes to the FastAPI application"""

        @app.post("/custom/endpoint")
        async def custom_endpoint(request: CustomRequest):
            # Convert request to Xaibo format
            agent_id = request.agent_id
            message = request.message

            # Execute agent
            agent = self.xaibo.get_agent(agent_id)
            response = await agent.handle_text_message(message)

            # Convert response to custom format
            return CustomResponse(
                result=response.content,
                metadata=response.metadata
            )

Adapter Registration

# Register custom adapter
server = XaiboWebServer(
    xaibo=xaibo,
    adapters=["my.custom.CustomApiAdapter"],
    agent_dir="./agents"
)

Best Practices

  1. Error Handling: Implement comprehensive error handling
  2. Validation: Validate all input parameters
  3. Documentation: Provide clear API documentation
  4. Testing: Include thorough test coverage
  5. Performance: Optimize for expected load patterns

Configuration Examples

Multi-Adapter Setup

# docker-compose.yml
version: '3.8'
services:
  xaibo-server:
    image: xaibo:latest
    ports:
      - "8000:8000"
    command: >
      python -m xaibo.server.web
      --agent-dir /app/agents
      --adapter xaibo.server.adapters.OpenAiApiAdapter
      --adapter xaibo.server.adapters.McpApiAdapter
      --adapter xaibo.server.adapters.UiApiAdapter
      --host 0.0.0.0
      --port 8000
    volumes:
      - ./agents:/app/agents
    environment:
      - OPENAI_API_KEY=${OPENAI_API_KEY}

Load Balancer Configuration

```nginx upstream xaibo_backend { server xaibo-1:8000; server xaibo-2:8000; server xaibo-3:8000; }

server { listen 80; server_name api.example.com;

location /openai/ {
    proxy_pass http://xaibo_backend;
    proxy_set_header Host $host;
    proxy_set_header X-Real-IP $remote_addr;
}

location /mcp {
    proxy_pass http://xaibo_backend;
    proxy_set_header Host $host;
    proxy_set_header X-Real-IP $remote_addr;
}

}