API Adapters Reference¶
API adapters provide protocol-specific interfaces for interacting with Xaibo agents. They translate external API requests into Xaibo agent calls and format responses according to the target protocol specifications.
Authentication Setup Guide
For step-by-step authentication setup instructions, see the authentication how-to guide.
Available Adapters¶
- OpenAiApiAdapter - OpenAI Chat Completions API compatibility
- OpenAiResponsesApiAdapter - OpenAI Responses API with conversation management
- McpApiAdapter - Model Context Protocol (MCP) server functionality
- UiApiAdapter - GraphQL API for web interface
OpenAiApiAdapter¶
Provides OpenAI Chat Completions API compatibility for Xaibo agents.
Source: src/xaibo/server/adapters/openai.py
Class Path: xaibo.server.adapters.OpenAiApiAdapter
Constructor¶
Parameters¶
Parameter | Type | Description |
---|---|---|
xaibo |
Xaibo |
Xaibo instance containing registered agents |
streaming_timeout |
int |
Timeout in seconds for streaming responses (default: 10) |
api_key |
Optional[str] |
API key for authentication. If provided, all requests must include valid Authorization header. Falls back to OPENAI_API_KEY environment variable if not specified. |
API Endpoints¶
GET /openai/models
¶
Returns list of available agents as OpenAI-compatible models.
Authentication: Required if API key is configured.
Request Headers:
Response Format:
{
"object": "list",
"data": [
{
"id": "my-agent",
"object": "model",
"created": 0,
"owned_by": "organization-owner"
}
]
}
POST /openai/chat/completions
¶
OpenAI-compatible chat completions endpoint.
Authentication: Required if API key is configured.
Request Headers:
Content-Type: application/json
Authorization: Bearer sk-your-api-key # Required if authentication enabled
Request Format:
{
"model": "agent-id",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "Hello, how are you?"
}
],
"temperature": 0.7,
"max_tokens": 2048,
"stream": false
}
Request Parameters:
Parameter | Type | Required | Description |
---|---|---|---|
model |
str |
Yes | Xaibo agent ID to use |
messages |
List[dict] |
Yes | Conversation messages |
stream |
bool |
No | Enable streaming responses |
temperature |
float |
No | Not yet implemented - Sampling temperature (0.0-2.0) |
max_tokens |
int |
No | Not yet implemented - Maximum tokens to generate |
top_p |
float |
No | Not yet implemented - Nucleus sampling parameter |
stop |
List[str] |
No | Not yet implemented - Stop sequences |
presence_penalty |
float |
No | Not yet implemented - Presence penalty (-2.0 to 2.0) |
frequency_penalty |
float |
No | Not yet implemented - Frequency penalty (-2.0 to 2.0) |
user |
str |
No | Not yet implemented - User identifier |
Response Format (Non-Streaming):
{
"id": "chatcmpl-123",
"object": "chat.completion",
"created": 1677652288,
"model": "agent-id",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "Hello! I'm doing well, thank you for asking."
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 0,
"completion_tokens": 0,
"total_tokens": 0
}
}
Response Format (Streaming):
data: {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1677652288,"model":"agent-id","choices":[{"index":0,"delta":{"content":"Hello"},"finish_reason":null}]}
data: {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1677652288,"model":"agent-id","choices":[{"index":0,"delta":{"content":"!"},"finish_reason":null}]}
data: {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1677652288,"model":"agent-id","choices":[{"index":0,"delta":{},"finish_reason":"stop"}]}
data: [DONE]
Message Format Support¶
Text Messages¶
Currently only text messages are supported:
Image Messages (Planned)¶
Image message support is planned for future releases:
{
"role": "user",
"content": [
{
"type": "text",
"text": "What's in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "..."
}
}
]
}
Function Calls (Planned)¶
Function call support is planned for future releases:
{
"role": "assistant",
"content": null,
"function_call": {
"name": "get_weather",
"arguments": "{\"city\": \"San Francisco\"}"
}
}
Error Handling¶
Authentication Errors¶
When API key authentication is enabled:
Missing Authorization Header:
Invalid API Key:
Agent Not Found¶
Note: Token counting is not yet implemented, so the usage
field in responses currently returns zeros. Full OpenAI-compatible error response format and specific error codes are planned for future releases.
Example Usage¶
cURL¶
Without Authentication:
curl -X POST http://localhost:8000/openai/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "my-agent",
"messages": [
{"role": "user", "content": "Hello!"}
],
"temperature": 0.7
}'
With Authentication:
curl -X POST http://localhost:8000/openai/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-your-api-key" \
-d '{
"model": "my-agent",
"messages": [
{"role": "user", "content": "Hello!"}
],
"temperature": 0.7
}'
Python (OpenAI SDK)¶
Without Authentication:
import openai
client = openai.OpenAI(
base_url="http://localhost:8000/openai",
api_key="not-needed" # No authentication required
)
response = client.chat.completions.create(
model="my-agent",
messages=[
{"role": "user", "content": "Hello!"}
],
temperature=0.7
)
print(response.choices[0].message.content)
With Authentication:
import openai
client = openai.OpenAI(
base_url="http://localhost:8000/openai",
api_key="sk-your-api-key" # Use your configured API key
)
response = client.chat.completions.create(
model="my-agent",
messages=[
{"role": "user", "content": "Hello!"}
],
temperature=0.7
)
print(response.choices[0].message.content)
Streaming¶
stream = client.chat.completions.create(
model="my-agent",
messages=[{"role": "user", "content": "Tell me a story"}],
stream=True
)
for chunk in stream:
if chunk.choices[0].delta.content is not None:
print(chunk.choices[0].delta.content, end="")
McpApiAdapter¶
Implements Model Context Protocol (MCP) server functionality.
Source: src/xaibo/server/adapters/mcp.py
Class Path: xaibo.server.adapters.McpApiAdapter
Constructor¶
Parameters¶
Parameter | Type | Description |
---|---|---|
xaibo |
Xaibo |
Xaibo instance containing registered agents |
api_key |
Optional[str] |
API key for authentication. If provided, all requests must include valid Authorization header. Falls back to MCP_API_KEY environment variable if not specified. |
API Endpoints¶
POST /mcp/
¶
Main MCP JSON-RPC 2.0 endpoint for all protocol communication.
Authentication: Required if API key is configured.
Request Headers:
Content-Type: application/json
Authorization: Bearer your-api-key # Required if authentication enabled
Request Format:
{
"jsonrpc": "2.0",
"id": 1,
"method": "method_name",
"params": {
"param1": "value1",
"param2": "value2"
}
}
Response Format:
Error Response Format:
{
"jsonrpc": "2.0",
"id": 1,
"error": {
"code": -32600,
"message": "Invalid Request",
"data": "Additional error information"
}
}
Authentication Error Response:
{
"jsonrpc": "2.0",
"id": null,
"error": {
"code": -32001,
"message": "Missing Authorization header"
}
}
Supported MCP Methods¶
initialize
¶
Establishes connection and exchanges capabilities.
Request:
{
"jsonrpc": "2.0",
"id": 1,
"method": "initialize",
"params": {
"protocolVersion": "2024-11-05",
"clientInfo": {
"name": "my-client",
"version": "1.0.0"
},
"capabilities": {}
}
}
Response:
{
"jsonrpc": "2.0",
"id": 1,
"result": {
"protocolVersion": "2024-11-05",
"serverInfo": {
"name": "xaibo-mcp-server",
"version": "1.0.0"
},
"capabilities": {
"tools": {}
}
}
}
notifications/initialized
¶
Confirms initialization completion.
Request:
Response: No response (notification)
tools/list
¶
Returns available Xaibo agents as MCP tools.
Request:
Response:
{
"jsonrpc": "2.0",
"id": 2,
"result": {
"tools": [
{
"name": "my-agent",
"description": "Execute Xaibo agent 'my-agent'",
"inputSchema": {
"type": "object",
"properties": {
"message": {
"type": "string",
"description": "The text message to send to the agent"
}
},
"required": ["message"]
}
}
]
}
}
tools/call
¶
Executes a specific agent with provided arguments.
Request:
{
"jsonrpc": "2.0",
"id": 3,
"method": "tools/call",
"params": {
"name": "my-agent",
"arguments": {
"message": "Hello, what can you help me with?"
}
}
}
Response:
{
"jsonrpc": "2.0",
"id": 3,
"result": {
"content": [
{
"type": "text",
"text": "Hello! I'm a helpful assistant. I can help you with various tasks..."
}
]
}
}
Agent Entry Points¶
For agents with multiple entry points, tools are named as agent_id.entry_point
:
{
"tools": [
{
"name": "multi-agent.text",
"description": "Execute text handler for 'multi-agent'"
},
{
"name": "multi-agent.image",
"description": "Execute image handler for 'multi-agent'"
}
]
}
Error Codes¶
Code | Description | Meaning |
---|---|---|
-32700 |
Parse error | Invalid JSON |
-32600 |
Invalid Request | Missing required fields |
-32601 |
Method not found | Unsupported MCP method |
-32602 |
Invalid params | Missing agent or arguments |
-32603 |
Internal error | Agent execution failure |
-32001 |
Authentication error | Missing, invalid, or malformed Authorization header |
Example Usage¶
cURL¶
Without Authentication:
# Initialize connection
curl -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 1,
"method": "initialize",
"params": {
"protocolVersion": "2024-11-05",
"clientInfo": {"name": "test-client", "version": "1.0.0"}
}
}'
# List available tools
curl -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 2,
"method": "tools/list",
"params": {}
}'
# Call an agent
curl -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 3,
"method": "tools/call",
"params": {
"name": "my-agent",
"arguments": {"message": "Hello!"}
}
}'
With Authentication:
# Initialize connection
curl -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer your-api-key" \
-d '{
"jsonrpc": "2.0",
"id": 1,
"method": "initialize",
"params": {
"protocolVersion": "2024-11-05",
"clientInfo": {"name": "test-client", "version": "1.0.0"}
}
}'
# List available tools
curl -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer your-api-key" \
-d '{
"jsonrpc": "2.0",
"id": 2,
"method": "tools/list",
"params": {}
}'
# Call an agent
curl -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-H "Authorization: Bearer your-api-key" \
-d '{
"jsonrpc": "2.0",
"id": 3,
"method": "tools/call",
"params": {
"name": "my-agent",
"arguments": {"message": "Hello!"}
}
}'
Python (MCP Client)¶
Without Authentication:
import json
import requests
class MCPClient:
def __init__(self, base_url: str, api_key: str = None):
self.base_url = base_url
self.session = requests.Session()
self.request_id = 0
# Set up authentication if API key provided
if api_key:
self.session.headers.update({
"Authorization": f"Bearer {api_key}"
})
def _call(self, method: str, params: dict = None):
self.request_id += 1
payload = {
"jsonrpc": "2.0",
"id": self.request_id,
"method": method,
"params": params or {}
}
response = self.session.post(
f"{self.base_url}/mcp/",
json=payload,
headers={"Content-Type": "application/json"}
)
return response.json()
def initialize(self):
return self._call("initialize", {
"protocolVersion": "2024-11-05",
"clientInfo": {"name": "python-client", "version": "1.0.0"}
})
def list_tools(self):
return self._call("tools/list")
def call_tool(self, name: str, arguments: dict):
return self._call("tools/call", {
"name": name,
"arguments": arguments
})
# Usage without authentication
client = MCPClient("http://localhost:8000")
# Initialize
init_response = client.initialize()
print("Initialized:", init_response)
# List tools
tools_response = client.list_tools()
print("Available tools:", tools_response["result"]["tools"])
# Call agent
result = client.call_tool("my-agent", {"message": "Hello!"})
print("Agent response:", result["result"]["content"])
With Authentication:
# Usage with authentication
client = MCPClient("http://localhost:8000", api_key="your-api-key")
# Initialize
init_response = client.initialize()
print("Initialized:", init_response)
# List tools
tools_response = client.list_tools()
print("Available tools:", tools_response["result"]["tools"])
# Call agent
result = client.call_tool("my-agent", {"message": "Hello!"})
print("Agent response:", result["result"]["content"])
UiApiAdapter¶
Provides debug UI and GraphQL API for agent inspection and monitoring.
Source: src/xaibo/server/adapters/ui.py
Class Path: xaibo.server.adapters.UiApiAdapter
Constructor¶
Parameters¶
Parameter | Type | Description |
---|---|---|
xaibo |
Xaibo |
Xaibo instance for agent management |
API Endpoints¶
GET /
¶
Serves static UI files.
Response: Static files for the web interface
POST /api/ui/graphql
¶
GraphQL endpoint for querying agent data and execution traces.
Request Format:
Response Format:
{
"data": {
"agents": [
{
"id": "my-agent",
"description": "Example agent",
"modules": [
{"id": "llm", "module": "xaibo.primitives.modules.llm.OpenAILLM"}
]
}
]
}
}
GraphQL Schema¶
Agent Type¶
Note: Currently only the id
field is implemented. The description
, modules
, and exchange
fields are planned for future releases.
Module Type¶
Exchange Type¶
DebugTrace Type¶
Note: The debug_log
query returns DebugTrace
instead of Trace
. The Trace
type is not implemented.
Example Queries¶
List All Agents¶
Get Agent Configuration¶
query GetAgentConfig($agentId: String!) {
agent_config(agent_id: $agentId) {
id
modules {
id
module
provides
uses
config
}
exchange {
module
protocol
provider
}
}
}
Get Debug Traces¶
query GetDebugLog($agentId: String!) {
debug_log(agent_id: $agentId) {
agent_id
events {
agent_id
event_name
event_type
module_id
module_class
method_name
time
call_id
caller_id
arguments
result
exception
}
}
}
Debug UI Features¶
Agent Overview¶
- List of all registered agents
- Agent configuration visualization
- Module dependency graphs
Execution Traces¶
- Real-time trace viewing
- Filtering by agent and event type
- Detailed event inspection
Performance Metrics¶
- Response time statistics
- Token usage tracking
- Error rate monitoring
Adapter Development¶
Creating Custom Adapters¶
from fastapi import FastAPI
from xaibo import Xaibo
class CustomApiAdapter:
def __init__(self, xaibo: Xaibo):
self.xaibo = xaibo
def adapt(self, app: FastAPI):
"""Add routes to the FastAPI application"""
@app.post("/custom/endpoint")
async def custom_endpoint(request: CustomRequest):
# Convert request to Xaibo format
agent_id = request.agent_id
message = request.message
# Execute agent
agent = self.xaibo.get_agent(agent_id)
response = await agent.handle_text_message(message)
# Convert response to custom format
return CustomResponse(
result=response.content,
metadata=response.metadata
)
Adapter Registration¶
# Register custom adapter
server = XaiboWebServer(
xaibo=xaibo,
adapters=["my.custom.CustomApiAdapter"],
agent_dir="./agents"
)
Best Practices¶
- Error Handling: Implement comprehensive error handling
- Validation: Validate all input parameters
- Documentation: Provide clear API documentation
- Testing: Include thorough test coverage
- Performance: Optimize for expected load patterns
Configuration Examples¶
Multi-Adapter Setup¶
# docker-compose.yml
version: '3.8'
services:
xaibo-server:
image: xaibo:latest
ports:
- "8000:8000"
command: >
python -m xaibo.server.web
--agent-dir /app/agents
--adapter xaibo.server.adapters.OpenAiApiAdapter
--adapter xaibo.server.adapters.McpApiAdapter
--adapter xaibo.server.adapters.UiApiAdapter
--host 0.0.0.0
--port 8000
volumes:
- ./agents:/app/agents
environment:
- OPENAI_API_KEY=${OPENAI_API_KEY}
Load Balancer Configuration¶
```nginx upstream xaibo_backend { server xaibo-1:8000; server xaibo-2:8000; server xaibo-3:8000; }
server { listen 80; server_name api.example.com;
location /openai/ {
proxy_pass http://xaibo_backend;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
}
location /mcp {
proxy_pass http://xaibo_backend;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
}
}