Skip to content

Orchestrator Modules Reference

Orchestrator modules coordinate agent behavior by managing interactions between LLMs, tools, and memory systems. They implement the core agent logic and decision-making processes.

StressingToolUser

An orchestrator that processes user messages by leveraging an LLM to generate responses and potentially use tools. If tool execution fails, it increases the temperature (stress level) for subsequent LLM calls, simulating cognitive stress.

Source: src/xaibo/primitives/modules/orchestrator/stressing_tool_user.py

Module Path: xaibo.primitives.modules.orchestrator.StressingToolUser

Dependencies: None

Protocols: Provides TextMessageHandlerProtocol, Uses LLMProtocol, ToolProviderProtocol, ResponseProtocol, ConversationHistoryProtocol

Constructor Dependencies

Parameter Type Description
response ResponseProtocol Protocol for sending responses back to the user
llm LLMProtocol Protocol for generating text using a language model
tool_provider ToolProviderProtocol Protocol for accessing and executing tools
history ConversationHistoryProtocol Conversation history for context
config dict Optional configuration dictionary

Configuration

Parameter Type Default Description
system_prompt str "" Initial system prompt for the conversation
max_thoughts int 10 Maximum number of tool usage iterations

Methods

handle_text(text: str) -> None

Processes a user text message, potentially using tools to generate a response.

Parameters:

  • text: The user's input text message

Behavior:

  1. Initializes a conversation with the system prompt and user message
  2. Retrieves available tools from the tool provider
  3. Iteratively generates responses and executes tools as needed
  4. Increases stress level (temperature) if tool execution fails
  5. Sends the final response back to the user

Stress Management:

  • Starts with temperature 0.0
  • Increases temperature by 0.1 for each tool execution failure
  • Higher temperature simulates cognitive stress in subsequent LLM calls

Example Configuration

modules:
  - module: xaibo.primitives.modules.llm.openai.OpenAIProvider
    id: llm
    config:
      model: gpt-4

  - module: xaibo.primitives.modules.tools.python_tool_provider.PythonToolProvider
    id: tools
    config:
      tool_packages: [tools.weather, tools.calendar]

  - module: xaibo.primitives.modules.orchestrator.StressingToolUser
    id: orchestrator
    config:
      max_thoughts: 15
      system_prompt: |
        You are a helpful assistant with access to various tools.
        Always try to use tools when they can help answer questions.
        Think step by step and explain your reasoning.

exchange:
  - module: orchestrator
    protocol: LLMProtocol
    provider: llm
  - module: orchestrator
    protocol: ToolProviderProtocol
    provider: tools
  - module: __entry__
    protocol: TextMessageHandlerProtocol
    provider: orchestrator

Behavior

The StressingToolUser follows this process:

  1. Conversation Setup: Retrieves conversation history and adds system prompt if configured
  2. User Message Processing: Adds the user's message to the conversation
  3. Tool Discovery: Retrieves available tools from the tool provider
  4. Iterative Processing: Up to max_thoughts iterations:

    • Generates LLM response with current stress level (temperature)
    • If tools are called and iteration limit not reached:

      • Executes all requested tools
      • Handles tool failures by increasing stress level
      • Adds tool results to conversation
    • If no tools called or max iterations reached, ends processing

  5. Response: Sends the final assistant message back to the user

Features

  • Stress Simulation: Increases LLM temperature on tool failures
  • Tool Integration: Seamlessly executes multiple tools per iteration
  • Iteration Control: Prevents infinite loops with max_thoughts limit
  • Error Handling: Gracefully handles tool execution failures
  • Conversation Context: Maintains full conversation history

Tool Execution

When tools are called:

  • All tool calls in a single LLM response are executed
  • Tool results are collected and added to the conversation
  • Failed tool executions increase the stress level by 0.1
  • Tool execution stops when max thoughts are reached

Example Usage

from xaibo.primitives.modules.orchestrator.stressing_tool_user import StressingToolUser

# Initialize with dependencies
orchestrator = StressingToolUser(
    response=response_handler,
    llm=llm_provider,
    tool_provider=tool_provider,
    history=conversation_history,
    config={
        'max_thoughts': 10,
        'system_prompt': 'You are a helpful assistant.'
    }
)

# Handle a user message
await orchestrator.handle_text("What's the weather like in Paris?")

Custom Orchestrators

To create custom orchestrators, implement the TextMessageHandlerProtocol:

from xaibo.core.protocols.message_handlers import TextMessageHandlerProtocol

class CustomOrchestrator(TextMessageHandlerProtocol):
    async def handle_text(self, text: str) -> None:
        # Custom orchestration logic
        pass